

National Park Service U.S. Department of the Interior

Lake Roosevelt National Recreation Area

The River Mile Water Quality

Lesson # 7 Water Quality: Point Source and Non-Point Source Pollution

Developed by the Lake Roosevelt Forum to support "The River Mile" National Park Service Program

Suggested duration: 90 minutes

Inquiry Question:

How do metals and chemicals such as mercury, zinc, dioxins, furans and PCBs get into the water?

Inquiry Process:

Variables: controlled, dependent & independent

Standards:

PS2, PS3, ES2, LS2 Assessment: Mapping PS pollution

Materials:

Watershed model trays, soil, rocks, small plants, Watering bottle Sprinkler top Food coloring Pink & green sprinkles Chocolate sprinkles Oregano or parsley Vinegar Baking soda Ph paper

Handouts:

Stream Table Model Toxic Dump lab Points, Plots &Transects

Credits/Citations:

FOSS Earth Forms Kit Exploratorium You Tube Videos www.scorecard.org

LESSON # 7 Water Quality: Point & Non-Point Source Pollution

Point Source: Near the Canadian border, the upper Columbia River is still flowing before it becomes the reservoir Lake Roosevelt. In the Northport area there are striking black sand beaches caused by slag (from mining operations in Canada. Currently EPA is investigating human health & ecological damage caused by this point source. Other examples of point source pollution are pulp mills, aluminum plants, waste water treatment plants that discharge into rivers. In point source contamination the contaminant origin is known.

Non-point sources are non-specific and often associated with storm water and agricultural runoff. Contaminants from a variety of sources, such as streets and farms, are picked up by storm water, and enter groundwater or travel directly into lakes and rivers untreated. Hydroelectric facilities are grouped into the category of non-point source pollution. Other examples of non-point source pollution are erosion and removal of shading vegetation next to waterways.

STUDENT WORK AND ASSESSMENT: Mapping Skills

QUESTIONS TO EXPLORE/INSTRUCTIONS/PROCEDURE

- 1. Students view & discuss one or more of the You Tube videos, on Point source & Non-Point Source pollution
- Introduce the concept of Point & Non Point source Pollution. Make a class list of possible sources for the Columbia River & Lake Roosevelt including possible sources in the local community.
- 3. Research the EPA listed point source polluter by zip code at <u>www.scorecard.org</u>. Map the PS in your community
- 4. Observe, draw and test watershed models to demonstrate PS & NPS pollution movement due to storm events
 - a. Storm water: Don't dump that here!
 - b. Toxic Dump: Where is it coming from?
- 5. **Optional**: Students write to a Classroom EPA team requesting a study of their (stream table) Watershed. Identify concerns and the evidence collected to determine the sources of pollution.
- 6. Each team becomes the EPA team for another group's watershed and investigates the complaint. EPA teams propose best management practices, clean up efforts and new laws to reduce or eliminate the impact of PS & NPS pollution?

WATER QUALITY: POINT SOURCE AND NON-POINT SOURCE POLLUTION

Name:

Date:

Essential Question:

• What are the sources of water pollutants?

Inquiry Question:

How are pollutants transported into and throughout the Lake Roosevelt watershed?

Objectives:

You will:

- Use internet resources to research local point source polluters
- Explore non-point sources of water pollution using a watershed model
- Develop a map using points, plots and transects

Introduction:

Point Source (PS) pollution is the origin of known or deliberate environmental releases (e.g., land, air & water pollution) from fixed points such as a metal refinery, mine, power plant, pulp mill, smokestack, wastewater discharge pipes, and others.

Nonpoint Source (NPS) pollution, <u>http://www.epa.gov/owow/NPS/qa.html</u> unlike PS pollution from industrial and sewage treatment plants, comes from many diffuse sources. NPS pollution is caused by rainfall or snowmelt moving over and through the ground. As the runoff moves, it picks up and carries away natural and human-made pollutants, finally depositing them into lakes, rivers, wetlands, coastal waters, and even in our underground sources of drinking water. These pollutants include:

- ⇒ Excess fertilizers, herbicides, and insecticides from agricultural and residential lands;
- ⇒ Oil, grease, and toxic chemicals from urban runoff and energy production;
- ⇒ Sediment from construction sites, crop and forest lands, and eroding streambanks;
- ⇒ Salt from irrigation practices and acid drainage from abandoned mines;
- ⇒ Bacteria and nutrients from livestock, pet wastes, and faulty septic systems;
- ⇒ Atmospheric deposition and hydro-modification are also sources of NPS pollution

<u>Think Time:</u>

My thoughts, ideas, and questions about pollution in my community:

"You Tube" Videos: POINT SOURCE AND NON-POINT SOURCE POLLUTION

- 1. View, Listen and Evaluate: Select one or more of these videos
 - a. Non-Point Source Pollution: An introduction to Storm water <u>http://www.youtube.com/watch?v=cACFw8lzkPl&NR=1</u>
 - b. Water Pollution Final <u>http://www.youtube.com/watch?v=a-x0AJQ5zHQ&NR=1</u>
 - c. Stop Non-Point Source Pollution! <u>http://www.youtube.com/watch?v=XdtQhTV0J6g</u>
 - d. TOXIC SPILL TRAIL BC CANADA <u>http://www.youtube.com/watch?v=2zMT6Bt14NA</u>
 - e. Frogline Nonpoint Source Pollution Education http://www.youtube.com/watch?v=HhlPtNX5XTM
- 2. Record 3-5 factual details and your thoughts or ideas about the presentations.

Notes from the point source and non-point sour	rce pollution videos.
Make a list of local pollution sources.	
POINT SOURCE (PS)	NON-POINT SOURCES (NPS)

3. Compare your lists with two other students

Environmental Defense Scorecard – The Pollution Information Site – <u>www.scorecard.org</u> Explore this website and find out about....

Point Sources – Where are the known sources of pollution in your community? What types of pollutants are being released? **Non-Point Sources** – How might pollution from neighboring counties be impacting your community?

- 1. Go to <u>www.scorecard.org/</u> Data were verified by the Environmental Protection Agency.
- 2. Look at the home page. In the left hand column you will see pollution topics to investigate: Toxics, Air, Water, Agriculture, Environmental Justice and Health Hazards.
- 3. At the bottom, enter your home or school zip code into the "ZIP to Your Community" box and click on "GO"
- 4. Review the Pollution Report Card for your zip code which will give you information about your entire county.
- 5. Click on any word you don't understand and you will be taken to a definition
- 6. As you review the report card, enter the data on the forms provided
 - a. Find out Toxic Chemicals Released by Factories, Power Plants and Other Industrial Companies
 - i. How does your county rank in the % dirtiest or cleanest in the country?
 - ii. Locate the PS names rank, city and the # of pounds of pollution they produce
 - iii. Find the names of the major pollutants, their rank and the # of pounds produced
 - iv. What percent of homes in your county are affected by lead hazards?
 - v. Are there any Superfund sites in your county?
 - b. Study the information about Air quality and record the data is the table provided:
 - i. How does your county rank in the % "cleanest or dirtiest air" in the country
 - ii. Are there facilities in your county releasing air pollutants? What kind and how much?
 - c. Finally, study the information available about water in your county
 - i. How does your county rank in the % "cleanest or dirtiest water" in the country?
 - ii. What percent of the water bodies are impaired?
 - iii. How many water sheds are located in your county? List the names
 - iv. Find the Surface Water data. What % of the Rivers, Streams, & Creeks are affected by Pollutants?
 - 1. Locate the % for: Pathogens, Temperature, pH, DO/Organic Enrichment, and Metals
 - v. Find the data for Lakes, Reservoirs, and Ponds and record the % affected by each of the following:
 - 1. Impaired Biological Community, Other, Temperature, Pathogens, Low DO/Organic Enrichment
 - d. Is your county impacted by animal waste (NPS)? What is the impact and why is it important?

Data on Scorecard was accurate between 1999 and 2005. What changes have happened in your county since then?

County	% Rank in USA	Toxic Che Plants	micals Releas and Other In	ed by Fac dustrial C	tories, Power ompanies	What are the	e Major Po	llutants?	Lead Hazards	Superfund Sites
Zip code Name	among % of the dirtiest counties	Rank	Facility	City	Pounds	Rank Chen	mical Name	Pounds	% of homes have a high lead risk	% of all counties in USA (#)SFS Name & wastes

County	Clean Air %	How Clean is Your Air?	Smog and	Soot: How Much A	Air Pollution is	Air Pol	lutant Standard	ls
	Rank in USA	Air Quality (AQ)	Releas	ed in Your Commu	nity by PS?		Index	
Zip code	among the		Rank	Facility	Tons	0 - 50	Good	
	dirtier%							
Namo	of all counties in					50 - 100	Moderate	
Name	the U.S. in terms					100 - 200	Unhealthful	
	of pm-10 24-hr.							
	ave					200 - 300	Very Unhealthful	
	concentration					300 - 500	Hazardous	

County	Clean Water % Rank in USA	impaired water bodies %	Watersheds located in the County	Surface Water - % Streams, & Creeks by Pollutants	Rivers, affected	Lakes, Reservoirs, and % affected by	Ponds
Zip code	%	%	County contains a portion of	Pathogens	%	Impaired Biological Community	%
Name	Name cleanest impaired (#)watersheds: Surface (Write the names of watersheds)	ed (#)watersheds: (Write the names of watersheds)	Temperature	%	Other	%	
			рН	%	Temperature	%	
water			DO/Organic Enrichment	%	Pathogens	%	
		Metals	%	Low DO/Organic Enrichment	%		

Stream Table Investigation: Storm Water and Non-Point Source Pollution

Materials:

- 1. Stream Table prepared w/NPSP
- 2. Watering can/bottle with sprinkler
- 3. Catch basin
- 4. Protective covering for table and floor

Observational Data Collection using Points, Plots and Transects:

1. Use the meter stick to mark one (1) cm points on all Notes & observations here: four sides of the stream table pan 2. The points will be used to visualize a set of grid lines across the stream table. 3. Use graph paper and the stream table grid line points to draw a sketch of the stream table prior to the "STORM EVENT" include: □ Land forms, river beds, empty pan □ Non-Point Source pollutants on the land surface: i. Animal waste – chocolate sprinkles ii. Pesticides – pink sprinkles iii. Nitrogen rich fertilizer – green sprinkles iv. Grass clippings, leaves, and yard organic wastes - dried oregano or parsley v. Oil & grease from autos and machinery on roads or improperly dumped - vegetable oil mixed with soy sauce

Observe, test and record below the water prior to the "STORM EVENT"

WQ	Stream Table Water Prior to Storm	Stream Table Water Post Storm
	Event	Event
Ph		
Turbidity		
Particulate		
Matter		
Color, Smell		
&		
Appearance		

- 5. Meter stick and 50 100 ml cylinder
- 6. 5 Ph test papers
- 7. 2 liters tap water

Storm Event Directions:

- 1. Fill the watering can or bottle with the water sample you tested and observed.
- 2. Place the sprinking cap firmly on the watering can.
- 3. Hold the water source 50 cm above the stream table
- 4. Move the "rain" source evenly across the land surface from top to bottom and side to side until the watering bottle is empty.
- 5. Make observations during and following the Storm Event.
- 6. Observe, test and record the water quality after the storm event

Draw a 2 nd sketch of the same stream table after the	<u>sketch here</u>
"STORM EVENT"	
 If items on the first sketch have moved, 	
draw the new location	
Notice if erosion has moved soil into the	
empty section of the stream table pan and	
draw the new landforms.	
If anything is visible now that was not visible before	
the "STORM EVENT"	
Draw the shape, color or make a margin	
note with an arrow pointing to the location	
where there may be a new smell.	
Analyze the stream table for evidence of	
the source of the "mystery toxic"	
Draw a line (transect) from the end point	
back to the possible point of origin. How	
did this mystery toxic travel?	

- 7. Analyze the data for changes in water quality.
 - a. Did the water ph change after the storm event?
 - b. If so, what evidence can you find to explain the change?
- 8. Compare and contrast the before and after storm observations and write a short summary of the impact of storm water on water quality and transporting NPS pollution.

Conclusion:

States report that nonpoint source pollution is the leading cause of water quality problems. The effects of nonpoint source pollutants on specific waters vary and may not always be fully assessed. However, we know that these pollutants have harmful effects on drinking water supplies, recreation, fisheries, and wildlife. We all play a part. Nonpoint source pollution results from a wide variety of human activities on the land. Each of us can contribute to the problem without even realizing it

<u>What can we do about nonpoint source pollution?</u> We can all work together to reduce and prevent nonpoint source pollution. Some activities are federal responsibilities, such as ensuring that federal lands are properly managed to reduce soil erosion. Some are state responsibilities, for example, developing legislation to govern mining and logging, and to protect groundwater. Others are best handled locally, such as by zoning or erosion control ordinances. And each individual can play an important role by practicing conservation and by changing certain everyday habits.

9. Reflections and thoughts about personal, community and international actions:

Non-Poi	nt Source Pollution: An introduction to Stormwater
URL	http://www.youtube.com/watch?v=cACFw8lzkPl&NR=1
Producer	UConnNEMO May 30, 2008 University of Connecticut
Posted Description	A video produced as part of a multimedia website and CD_ROM highlighting the results of the Jordan Cove Urban Watershed Project in Waterford, CT. This project was funded in part by the CT DEP. Use of this video is for educational purposes only.
Length	5:04
# Views	2254
Selection Comments	Non-Point source pollution. The video is professionally produced and narrated. Watershed and drainage systems are highlighted with maps showing how NPSP (nitrogen, excessive nutrients, oils, salts, heavy metals, impervious surfaces can impact a large drainage area.
Water P	ollution Final
URL	http://www.youtube.com/watch?v=a-x0AJQ5zHQ&NR=1
Producer	khollis April 30, 2007
Posted Description	Marty Gottlieb-Hollis & Dan Silverman APES final Student Project
Length	5:03
# Views	123,510
Selection Comments	Point and Non point source pollution examples: The video uses a musical sound track (A Beautiful Day) and still photos with some written text incuding the Clean Water Act and suggestions for taking personal action.

You Tube Videos Search key words: Point Source and Non-point Source Po	llution
--	---------

Stop No	Stop Non-Point Source Pollution!		
URL	http://www.youtube.com/watch?v=XdtQhTV0J6g		
Producer	benwitherell April 22, 2009		
Posted	EPA Water Quality Video Contest entry		
Description	Student Project		
Length	2:55		
# Views	775		
Selection	This viedo has an informative spoken sound tract and discusses many ways to		
Comments	minimize NPSP. One community project is highlighted for stream bank		
	restoration using a team of volunteers installing erosion control mats.		

You Tube Videos Search key words: Point Non-Point Source Pollution

TOXIC S	PILL TRAIL BC CANADA
URL	http://www.youtube.com/watch?v=2zMT6Bt14NA
Producers	TMTV Nelson BC Canada
Description	A Toxic spill into the Columbia River from Teck Cominco - From the TMTV Vault copyright May 2008
Length	2:20
# Views	704
Selection Comments	Point Source example that has a long term and current impact on the columbia River and lake Roosevelt. Mentions the legal rulling for the US to bring action against Canadian companies that break US environmental laws.

Froglin	e - Nonpoint Source Pollution Education
URL	http://www.youtube.com/watch?v=HhlPtNX5XTM
Producer	Water Environment Federation copyright 2002
Description	Join Finneas Frog & Kris Kroak (puppets) as they show us how to prevent
	nonpoint source pollution in our daily lives. The video is good information for
	kids and adults. (runoff, nonpoint, stormwater, water environment federation)
Length	8minutes 20 seconds
# Views	1,186
Selection	Frog Puppets do a new broadcast discussing frogs as bio-indicators of
Comments	environmental health, runnoff and the various pproducts that can enter the water
	thru the stormdrain (oil, pesticides, chemicals, fertilizers etc,) Alternatives are
	suggested such as ladybugs& composting.

Agrofor	estry Practices - Riparian Forest Buffers
URL	http://www.youtube.com/watch?v=8HDnyV1ViHw
Producer	PublicResourceOrg July 31, 2010
Posted Description	Agroforestry Practices - Riparian Forest Buffers - Center for Agroforestry 2004 - DVD AF1008 - University of Missouri Center for Agroforestry. Noncommercial use only, video used with permission. Riparian forest buffers are natural or re- established streamside forests made up of tree, shrub and grass plantings. They buffer non-point source pollution of waterways from adjacent land, reduce streambank erosion, protect aquatic environments and enhance wildlife. Learn the basics of establishing a riparian buffer practice and how profitable products, like decorative woody florals, can be implemented into the buffer.
Length	17.02
# Views	41
Selection Comments	The format is of interviews with a farmer who converted some of his property back to the riparian buffer. Non-Point source with suggested Best Management
	Practices.

Point Non- Point Enviroscape (model of watershed and lake or river)

What type of land uses do we see in our watershed? Watersheds are an area of land that all drain to one point. Topography changes from high to low

At each land use identify types of non-point pollution

- Construction site = land erosion
- Neighborhood = pesticides, fertilizers, leaves, grass clippings
- Factory = discuss point vs. non-point source pollution = squirt point source pollution through top of factory and allow to come out pipe in creek
- Farm = animal waste, erosion, fertilizers, pesticides
- Stream Bank= erosion
- Highway = liter and used oil

Let it rain! Let students squirt the rain on the watershed model

Materials for NPSP simulation:

Cinnamon = soil erosion Yellow crystals = pesticides Green crystals = fertilizers Brown sprinkles = animal waste Parsley/oregano = leaves & grass clippings Soy sauce = used oil Cocoa & water in small bottle = point source pollution from factory Spray bottle for rain simulation

Topics for Discussion

- □ the condition of the storm water as it moves through the watershed (water picks up anything in its path)
- □ the condition of the lake after it rains; discuss the habitat (would fish be able to live in a dirty lake? Aesthetics?
- □ water supply and costs associated with clean-up and use
- $\hfill\square$ recreation at the lakes and the effects of pollution on recreation
- □ ways to avoid non-point source pollution (erosion control, soil testing, re-vegitation, good housekeeping, auto care, litter clean-up

Point Sources - Where is the pollution in our county coming from?

County	% Rank	Toxic Chemicals Released by Factories, Power	What are the Major Pollutants?	Lead	Superfund Sites
	in USA	Plants and Other Industrial Companies		Hazards	
	among	Rank Facility City Pounds	Rank Chemical Name Pounds	%	% of all
	% of			of	counties in USA
	the			homes	(#)SFS
	dirtiest			have a	Name & wastes
	counties			high	
				lead	
				risk	

County	Clean Air %	How Clean is Your Air?	Smog and Soot: How Much Air Pollution is			Air Pollutant Standards		
	Rank in USA	Air Quality (AQ)	Released in Your Community by PS?			Index		
	among the		Rank	Facility	Tons	0 - 50	Good	
	dirtier% of all counties in					50 - 100	Moderate	
	the U.S. in terms					100 - 200	Unhealthful	
	of pm-10 24-hr. ave					200 - 300	Very Unhealthful	
	concentration					300 - 500	Hazardous	

County	Clean Water % Bank in	impaired water	Watersheds located in the County	Surface Water - % Rivers, Streams & Creeks affected	Lakes, Reservoirs, and Ponds % affected by
	USA	bodies %		by Pollutants	the ancelea by
	%	%	County contains a	Pathogens%	Impaired Biological Community%
	cleanest	impaired	red portion of (#)watersheds: (Write the names of watersheds)	Temperature%	Other%
	Surface			рН%	Temperature%
	water			DO/Organic Enrichment%	Pathogens%
				Metals%	Low DO/Organic Enrichment%

Teacher Key for <u>www.scorecard.org</u> Stevens, Lincoln & Ferry Counties

County	% Rank in USA	Toxic Chemicals Released by Factories, Power Plants and Other Industrial Companies Who Is Polluting? Point Sources				What are the Major Pollutants?			Lead Hazards	Superfund Sites
Stevens	2002 among 40% of the dirtiest counties	Rank 1 2 3	Facility BOISE KETTLE FALLS PLYWOOD MILL KETTLE FALLS LUMBER STIMSON LUMBER CO. ARDEN OPERATION	City KETTLE FALLS KETTLE FALLS COLVILLE	Pounds 29,657 83 10	Rank 1 2 3	Chemical Name METHANOL LEAD LEAD COMPOUNDS	Pounds 29,493 247 5 10	3% of homes have a high lead risk	2004 Best 10% of all counties in USA 1 SFS - Midnight Uranium + Mine ALUMINUM, ARSENIC, BARIUM, BERYLLIUM, CADMIUM, COBALT, COPPER, LEAD, MANGANESE, NICKEL, RADIUM, SELENIUM, THALLIUM, THORIUM, URANIUM, VANADIUM,
Lincoln	Not reported	No Rep	oorted Industrial Plants	5		Ranked countie hazard	in the worst 20 s having the hig in the USA	% of hest lead	5%	None
Ferry	2002, among the dirtier 40% in terms of land releases	Rank 1 2	Facility KETTLE RIVER OPS. MILL ECHO BAY INC. K2 MINE	City REPUBLIC CURLEW	Pounds 91,511 1,580	Rank 1 2 3 4 5 6	 Chemical Name NITRATE COPPER CYANIDE LEAD MERCURY S NITRIC ACID 	Pounds 48,005 39,002 4,500 1,491 90 4	2 % of homes have a high lead risk	2004, this county ranked among the cleanest/best 10% of all counties in the U.S. in terms of the number of designated Superfund sites = 0

Teacher Key for <u>www.scorecard.org</u> Stevens, Lincoln & Ferry Counties

County	Clean Air % Rank in USA	How Clean is Your Air Quality (AQ	Air?)	Smog and Soot: How Much Air Pollution is Released in Your Community by Point Sources			Air Pollutant Standards Index		
Stevens	2003 among the dirtier 30% of all counties in the U.S. in terms of pm-10 24-hr. ave concentration	% days good AQ: % days moderate AQ % days unhealthful AQ Max PSI level 2003 Median PSI level 2003 90th % PSI level 2003	78 22 0 105 28 59	Rank 1. 2.	Facility KETTLE FALLS (Electricity) NORTHWEST ALLOYS INC	Tons 74 19	0 - 50 50 - 100 100 - 200 200 - 300 300 - 500	Good Moderate Unhealthful Very Unhealthful Hazardous	
Lincoln	1999 among the dirtiest 20% of all counties in the U.S. in terms of pm- 10 emissions.	Lincoln county is ranked the cleaner 30% of all co the US in terms of an av individual's added cancer hazardous air pollutants	among ounties in erage risk from	How ca 20% ai countion the countion	an Lincoln county be in the c r quality (soot & smog) of al es but have no industries loc unty?	lirtiest I cated in			
Ferry	1999 ranked average (50%) in carbon monoxide emissions	Ferry county is ranked am cleaner 30% of all count US in terms of non cance from hazardous air pollut	iong the les in the er hazards tants	No ide No air	ntified point sources. monitoring stations				

Teacher Key for <u>www.scorecard.org</u> Stevens, Lincoln & Ferry Counties

County	Clean Water % Rank in USA	impaired water bodies %	Watershed located in the County	Surface Water - % Rivers, Streams, & Creeks affected by Pollutants		Lakes, Reservoirs, and Ponds % affected by	
Stevens	10 % cleanest Surface water	80% impaired	STEVENS County contains a portion of 6 watersheds: Colville, Franklin D. Roosevelt Lake Kettle, Little Spokane, Lower Spokane, Pend Oreille	Pathogens . Temperature . pH . DO/Organic Enrichment . Metals .	51% 30% 24% 20% 6%	Impaired Biological Community Other Temperature Pathogens Low DO/Organic Enrichment	62% 15% 8% 8% 8%
Lincoln	20 % cleanest surface water	80 % impaired	LINCOLN County contains a portion of 4 watersheds: Franklin D. Roosevelt Lake, Lower Spokane, Palouse, Upper Crab	Pathogens Temperature DO/Organic Enrichment pH Nutrients	55% 42% 28% 20% 15%	Impaired Biological Community Other Pathogens Ammonia Mercury	57% 14% 14% 7% 7%
Ferry	Top 5% cleanest surface water	60 % impaired	FERRY County contains a portion of 3 watersheds: Franklin D. Roosevelt Lake, Kettle, Sanpoil	Pathogens Temperature pH Low DO/Organic Enrichmer Metals	52% 28% 16% nt 12% 4%	Impaired Biological Community Other Mercury Low DO/Organic Enrichment Temperature	73% 18% 9% 9% 9%

NOTE: Possible inconsistencies between data on (a) impaired waterbodies and (b) percentage of waterbodies assessed

County	% Rank in USA	Toxic Chemicals Released by Factories, Power Plants and Other Industrial Companies Who Is Polluting? Point Sources	What are the Major Pollutants?	Lead Hazards	Superfund Sites
	among % of the dirtiest counties	Rank Facility City Pounds	Rank Chemical Name Pounds	% of homes have a high lead risk	% of all counties in USA (#)SFS Name & wastes

County	Clean Air % Rank in USA	How Clean is Your Air? Air Quality (AQ)	Smog and Soot: How Much Air Pollution is Released in Your Community by Point Sources			Air Pollutant Standards Index		
	among the		Rank	Facility	Tons	0 - 50	Good	
	of all counties in					50 - 100	Moderate	
	the U.S. in terms					100 - 200	Unhealthful	
	of pm-10 24-nr. ave					200 - 300	Very Unhealthful	
	concentration					300 - 500	Hazardous	

County	Clean Water % Rank in USA	impaired water bodies %	Watershed located in the County	Surface Water - % Rivers, Streams, & Creeks affected by Pollutants	Lakes, Reservoirs, and Ponds % affected by
	% cleanest Surface water	% impaired	County contains a portion of (#)watersheds: (Write the names of watersheds)	Pathogens%Temperature%pH%DO/Organic Enrichment%Metals%	Impaired Biological Community%Other%Temperature%Pathogens%Low DO/Organic Enrichment%

Stevens County:

• 1999 Emissions Summary of Criteria Air Pollutants

(Expressed in tons of pollutant emitted)

	,					<u>Volatile</u>
	<u>Carbon</u> monoxide	<u>Nitrogen</u> oxides	PM-2.5	PM-10	<u>Sulfur</u> dioxide	<u>organic</u> compounds
Mobile Sources	13,812	2,157	494	1,862	200	2,937
Area Sources	12,392	436	<u>1,498</u>	2,313	<u>40</u>	<u>1,854</u>
Point Sources	<u>3,611</u>	<u>645</u>	<u>88</u>	<u>93</u>	<u>1,538</u>	<u>371</u>
All sources	29,816	3,238	2,079	4,268	1,778	5,162

Lincoln County Air

• 1999 Emissions Summary of Criteria Air Pollutants

(Expressed in tons of pollutant emitted)

						<u>Volatile</u>
	<u>Carbon</u>	<u>Nitrogen</u>			<u>Sulfur</u>	<u>organic</u>
	<u>monoxide</u>	oxides	<u>PM-2.5</u>	<u>PM-10</u>	<u>dioxide</u>	<u>compounds</u>
Mobile Sources	<u>6,887</u>	<u>2,747</u>	222	<u>721</u>	277	773
Area Sources	<u>2,822</u>	<u>71</u>	<u>2,189</u>	<u>9,516</u>	<u>11</u>	<u>1,109</u>
All sources	<u>9,709</u>	<u>2,817</u>	<u>2,411</u>	<u>10,237</u>	<u>287</u>	<u>1,882</u>

Ferry County

• 1999 Emissions Summary of Criteria Air Pollutants

(Expressed in tons of pollutant emitted)

	, Coultar				C. If	<u>Volatile</u>
	<u>Carbon</u> monoxide	<u>Nitrogen</u> oxides	PM-2.5	PM-10	<u>dioxide</u>	<u>organic</u> <u>compounds</u>
Mobile Sources	<u>3,990</u>	<u>562</u>	134	458	57	<u>1,001</u>
Area Sources	<u>9,450</u>	<u>445</u>	<u>978</u>	<u>1,414</u>	<u>28</u>	720
All sources	<u>13,439</u>	<u>1,006</u>	<u>1,112</u>	<u>1,872</u>	<u>85</u>	<u>1,721</u>

Students set up stream tables with earth material and run water through the system. They observe the processes of erosion and deposition and become familiar with the landforms created. • Water is an important agent in shaping landforms. • The wearing away of earth is erosion: the settling of eroded material is deposition. Landforms that result from running water include canyons, deltas, and alluvial fans.

 Observe and measure the effects of flowing water in the stream table. • Compare the features created in the stream tables. Communicate the results of the investigations. Relate the processes in the stream table to the processes of erosion and deposition.

GO WITH THE FLOW

Students continue their stream-table investigations, studying variables that affect erosion and deposition—slope of the land and the rate of flow. They design further investigations, recording events and mapping the results. The slope of the land over which a river flows affects the processes of erosion and deposition.
During flooding, the rate of erosion

and deposition

Humans affect

the processes

of erosion and

deposition.

increases.

Observe and measure the results of streamtable investigations.
Experiment to find the effect of slope and floods

on erosion and deposition. • Communicate the results of experiments in a

conference.
Relate the stream-table results to natural processes